Namespaces
Variants

std::ranges:: upper_bound

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
헤더 파일에 정의됨 <algorithm>
호출 시그니처
(1)
template < std:: forward_iterator I, std:: sentinel_for < I > S,

class T, class Proj = std:: identity ,
std:: indirect_strict_weak_order
< const T * , std :: projected < I, Proj >> Comp = ranges:: less >
constexpr I upper_bound ( I first, S last, const T & value,

Comp comp = { } , Proj proj = { } ) ;
(C++20부터)
(C++26까지)
template < std:: forward_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T = std :: projected_value_t < I, Proj > ,
std:: indirect_strict_weak_order
< const T * , std :: projected < I, Proj >> Comp = ranges:: less >
constexpr I upper_bound ( I first, S last, const T & value,

Comp comp = { } , Proj proj = { } ) ;
(C++26부터)
(2)
template < ranges:: forward_range R,

class T, class Proj = std:: identity ,
std:: indirect_strict_weak_order
< const T * , std :: projected < ranges:: iterator_t < R > ,
Proj >> Comp = ranges:: less >
constexpr ranges:: borrowed_iterator_t < R >

upper_bound ( R && r, const T & value, Comp comp = { } , Proj proj = { } ) ;
(C++20부터)
(C++26까지)
template < ranges:: forward_range R,

class Proj = std:: identity ,
class T = std :: projected_value_t < ranges:: iterator_t < R > , Proj > ,
std:: indirect_strict_weak_order
< const T * , std :: projected < ranges:: iterator_t < R > ,
Proj >> Comp = ranges:: less >
constexpr ranges:: borrowed_iterator_t < R >

upper_bound ( R && r, const T & value, Comp comp = { } , Proj proj = { } ) ;
(C++26부터)
1) 범위 [ first , last ) 에서 value 보다 첫 번째 요소를 가리키는 반복자를 반환합니다. 해당 요소가 없으면 last 를 반환합니다. 범위 [ first , last ) 는 표현식 ! comp ( value, element ) 에 대해 분할되어야 합니다. 즉, 표현식이 true 인 모든 요소는 표현식이 false 인 모든 요소보다 앞에 위치해야 합니다. 완전히 정렬된 범위는 이 조건을 충족합니다.
2) (1) 과 동일하지만, r 을 소스 범위로 사용하며, 마치 ranges:: begin ( r ) first 로, ranges:: end ( r ) last 로 사용하는 것과 같습니다.

이 페이지에서 설명하는 함수형 개체들은 algorithm function objects (일반적으로 niebloids 로 알려진)입니다. 즉:

목차

매개변수

first, last - 부분적으로 정렬된 range 를 정의하는 iterator-sentinel 쌍
r - 검사할 부분적으로 정렬된 범위
value - 요소들과 비교할 값
pred - 투영된 요소들에 적용할 predicate
proj - 요소들에 적용할 projection

반환값

value 보다 첫 번째 요소를 가리키는 반복자, 또는 해당 요소가 없으면 last 를 반환합니다.

복잡도

수행된 비교 및 투영 적용 횟수는 first last 사이의 거리에 대해 로그적입니다(최대 log 2 (last - first) + O(1) 회의 비교 및 투영 적용). 그러나 random_access_iterator 를 모델링하지 않는 반복자의 경우, 반복자 증감 횟수는 선형입니다.

가능한 구현

struct upper_bound_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>,
             std::indirect_strict_weak_order
                 <const T*, std::projected<I, Proj>> Comp = ranges::less>
    constexpr I operator()(I first, S last, const T& value,
                           Comp comp = {}, Proj proj = {}) const
    {
        I it;
        std::iter_difference_t<I> count, step;
        count = ranges::distance(first, last);
        while (count > 0)
        {
            it = first; 
            step = count / 2;
            ranges::advance(it, step, last);
            if (!comp(value, std::invoke(proj, *it)))
            {
                first = ++it;
                count -= step + 1;
            }
            else
                count = step;
        }
        return first;
    }
    template<ranges::forward_range R, class Proj = std::identity,
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>,
             std::indirect_strict_weak_order
                 <const T*, std::projected<ranges::iterator_t<R>,
                                           Proj>> Comp = ranges::less>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value,
                       std::ref(comp), std::ref(proj));
    }
};
inline constexpr upper_bound_fn upper_bound;

참고 사항

기능 테스트 매크로 표준 기능
__cpp_lib_algorithm_default_value_type 202403 (C++26) 목록 초기화 for algorithms ( 1,2 )

예제

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <iterator>
#include <vector>
int main()
{
    namespace ranges = std::ranges;
    std::vector<int> data{1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6};
    {
        auto lower = ranges::lower_bound(data.begin(), data.end(), 4);
        auto upper = ranges::upper_bound(data.begin(), data.end(), 4);
        ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));
        std::cout << '\n';
    }
    {
        auto lower = ranges::lower_bound(data, 3);
        auto upper = ranges::upper_bound(data, 3);
        ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));
        std::cout << '\n';
    }
    using CD = std::complex<double>;
    std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}, {3, 1}};
    auto cmpz = [](CD x, CD y) { return x.real() < y.real(); };
    #ifdef __cpp_lib_algorithm_default_value_type
        auto it = ranges::upper_bound(nums, {2, 0}, cmpz);
    #else
        auto it = ranges::upper_bound(nums, CD{2, 0}, cmpz);
    #endif
    assert((*it == CD{3, 0}));
}

출력:

4 4 4 
3 3 3 3

참고 항목

특정 키와 일치하는 요소들의 범위를 반환합니다
(알고리즘 함수 객체)
주어진 값보다 작지 않은 첫 번째 요소에 대한 반복자를 반환합니다
(알고리즘 함수 객체)
요소들의 범위를 두 그룹으로 분할합니다
(알고리즘 함수 객체)
특정 값보다 첫 번째 요소에 대한 반복자를 반환합니다
(함수 템플릿)