Namespaces
Variants

std::ranges:: is_heap

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
헤더 파일에 정의됨 <algorithm>
함수 시그니처
template < std:: random_access_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_strict_weak_order
< std :: projected < I, Proj >> Comp = ranges:: less >

constexpr bool is_heap ( I first, S last, Comp comp = { } , Proj proj = { } ) ;
(1) (C++20 이후)
template < ranges:: random_access_range R, class Proj = std:: identity ,

std:: indirect_strict_weak_order
< std :: projected
< ranges:: iterator_t < R > , Proj >> Comp = ranges:: less >

constexpr bool is_heap ( R && r, Comp comp = { } , Proj proj = { } ) ;
(2) (C++20 이후)

지정된 범위가 heap 을 형성하는지 comp proj 를 기준으로 확인합니다.

1) 지정된 범위는 [ first , last ) 입니다.
2) 지정된 범위는 r 입니다.

이 페이지에서 설명하는 함수형 개체들은 algorithm function objects (일반적으로 niebloids 로 알려진)입니다. 즉:

목차

매개변수

first, last - 검사할 요소들의 범위 를 정의하는 반복자-감시자 쌍
r - 검사할 요소들의 range 범위
comp - 투영된 요소들에 적용할 비교자
proj - 요소들에 적용할 투영

반환값

1) ranges:: is_heap_until ( first, last, comp, proj ) == last
2) ranges:: is_heap_until ( r, comp, proj ) == ranges:: end ( r )

복잡도

O(N) 번의 comp proj 적용, 여기서 N 은:

1) ranges:: distance ( first, last )

가능한 구현

struct is_heap_fn
{
    template<std::random_access_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity,
             std::indirect_strict_weak_order
                 <std::projected<I, Proj>> Comp = ranges::less>
    constexpr bool operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        return (last == ranges::is_heap_until(first, last,
                                              std::move(comp), std::move(proj)));
    }
    template<ranges::random_access_range R, class Proj = std::identity,
             std::indirect_strict_weak_order
                 <std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
    constexpr bool operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::move(comp), std::move(proj));
    }
};
inline constexpr is_heap_fn is_heap{};

예제

#include <algorithm>
#include <bit>
#include <cmath>
#include <iostream>
#include <vector>
void out(const auto& what, int n = 1)
{
    while (n-- > 0)
        std::cout << what;
}
void draw_heap(const auto& v)
{
    auto bails = [](int n, int w)
    {
        auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); };
        n /= 2;
        if (!n)
            return;
        for (out(' ', w); n-- > 0;)
            b(w), out(' ', w + w + 1);
        out('\n');
    };
    auto data = [](int n, int w, auto& first, auto last)
    {
        for (out(' ', w); n-- > 0 && first != last; ++first)
            out(*first), out(' ', w + w + 1);
        out('\n');
    };
    auto tier = [&](int t, int m, auto& first, auto last)
    {
        const int n{1 << t};
        const int w{(1 << (m - t - 1)) - 1};
        bails(n, w), data(n, w, first, last);
    };
    const int m{static_cast<int>(std::ceil(std::log2(1 + v.size())))};
    auto first{v.cbegin()};
    for (int i{}; i != m; ++i)
        tier(i, m, first, v.cend());
}
int main()
{
    std::vector<int> v{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8};
    out("초기값, v:\n");
    for (auto i : v)
        std::cout << i << ' ';
    out('\n');
    if (!std::ranges::is_heap(v))
    {
        out("힙 생성 중...\n");
        std::ranges::make_heap(v);
    }
    out("make_heap 이후, v:\n");
    for (auto t{1U}; auto i : v)
        std::cout << i << (std::has_single_bit(++t) ? " │ " : " ");
    out("\n" "해당 이진 트리는:\n");
    draw_heap(v);
}

출력:

초기 상태, v:
3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8
힙 생성 중...
make_heap 이후, v:
9 │ 8 9 │ 6 5 8 9 │ 3 5 3 5 3 4 7 2 │ 1 2 3 1
해당 이진 트리:
               9
       ┌───────┴───────┐
       8               9
   ┌───┴───┐       ┌───┴───┐
   6       5       8       9
 ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐
 3   5   3   5   3   4   7   2
┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐
1 2 3 1

참고 항목

최대 힙인 가장 큰 부분 범위를 찾음
(알고리즘 함수 객체)
요소 범위로부터 최대 힙을 생성
(알고리즘 함수 객체)
최대 힙에 요소를 추가
(알고리즘 함수 객체)
최대 힙에서 가장 큰 요소를 제거
(알고리즘 함수 객체)
최대 힙을 오름차순으로 정렬된 요소 범위로 변환
(알고리즘 함수 객체)
(C++11)
주어진 범위가 최대 힙인지 확인
(함수 템플릿)